149 research outputs found

    PCE: web tools to compute protein continuum electrostatics

    Get PDF
    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pK(a) values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pK(a) values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at

    MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of protein targets with a known or predicted tri-dimensional structure and of drug-like chemical compounds is growing rapidly and so is the need for new therapeutic compounds or chemical probes. Performing flexible structure-based virtual screening computations on thousands of targets with millions of molecules is intractable to most laboratories nor indeed desirable. Since shape complementarity is of primary importance for most protein-ligand interactions, we have developed a tool/protocol based on rigid-body docking to select compounds that fit well into binding sites.</p> <p>Results</p> <p>Here we present an efficient multiple conformation rigid-body docking approach, MS-DOCK, which is based on the program DOCK. This approach can be used as the first step of a multi-stage docking/scoring protocol. First, we developed and validated the Multiconf-DOCK tool that generates several conformers per input ligand. Then, each generated conformer (bioactives and 37970 decoys) was docked rigidly using DOCK6 with our optimized protocol into seven different receptor-binding sites. MS-DOCK was able to significantly reduce the size of the initial input library for all seven targets, thereby facilitating subsequent more CPU demanding flexible docking procedures.</p> <p>Conclusion</p> <p>MS-DOCK can be easily used for the generation of multi-conformer libraries and for shape-based filtering within a multi-step structure-based screening protocol in order to shorten computation times.</p

    DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based <it>in silico </it>screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both <it>in silico </it>screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats.</p> <p>Results</p> <p>Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine.</p> <p>Conclusion</p> <p>DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.</p

    FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed <it>in silico</it>. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making.</p> <p>Results</p> <p>This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries.</p> <p>Conclusion</p> <p>We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.</p

    AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Virtual or <it>in silico </it>ligand screening combined with other computational methods is one of the most promising methods to search for new lead compounds, thereby greatly assisting the drug discovery process. Despite considerable progresses made in virtual screening methodologies, available computer programs do not easily address problems such as: structural optimization of compounds in a screening library, receptor flexibility/induced-fit, and accurate prediction of protein-ligand interactions. It has been shown that structural optimization of chemical compounds and that post-docking optimization in multi-step structure-based virtual screening approaches help to further improve the overall efficiency of the methods. To address some of these points, we developed the program AMMOS for refining both, the 3D structures of the small molecules present in chemical libraries and the predicted receptor-ligand complexes through allowing partial to full atom flexibility through molecular mechanics optimization.</p> <p>Results</p> <p>The program AMMOS carries out an automatic procedure that allows for the structural refinement of compound collections and energy minimization of protein-ligand complexes using the open source program AMMP. The performance of our package was evaluated by comparing the structures of small chemical entities minimized by AMMOS with those minimized with the Tripos and MMFF94s force fields. Next, AMMOS was used for full flexible minimization of protein-ligands complexes obtained from a mutli-step virtual screening. Enrichment studies of the selected pre-docked complexes containing 60% of the initially added inhibitors were carried out with or without final AMMOS minimization on two protein targets having different binding pocket properties. AMMOS was able to improve the enrichment after the pre-docking stage with 40 to 60% of the initially added active compounds found in the top 3% to 5% of the entire compound collection.</p> <p>Conclusion</p> <p>The open source AMMOS program can be helpful in a broad range of <it>in silico </it>drug design studies such as optimization of small molecules or energy minimization of pre-docked protein-ligand complexes. Our enrichment study suggests that AMMOS, designed to minimize a large number of ligands pre-docked in a protein target, can successfully be applied in a final post-processing step and that it can take into account some receptor flexibility within the binding site area.</p

    Screening Outside the Catalytic Site: Inhibition of Macromolecular Inter-actions Through Structure-Based Virtual Ligand Screening Experiments

    Get PDF
    During these last 15 years, drug discovery strategies have essentially focused on identifying small molecules able to inhibit catalytic sites. However, other mechanisms could be targeted. Protein-protein interactions play crucial roles in a number of biological processes, and, as such, their disruption or stabilization is becoming an area of intense activity. Along the same line, inhibition of protein-membrane could be of major importance in several disease indications. Despite the many challenges associated with the development of such classes of interaction modulators, there has been considerable success in the recent years. Importantly, through the existence of protein hot-spots and the presence of druggable pockets at the macromolecular interfaces or in their vicinities, it has been possible to find small molecule effectors using a variety of screening techniques, including combined virtual ligand-in vitro screening strategy. Indeed such in silico-in vitro protocols emerge as the method of choice to facilitate our quest of novel drug-like compounds or of mechanistic probes aiming at facilitating the understanding of molecular reactions involved in the Health and Disease process. In this review, we comment recent successes of combined in silico-in vitro screening methods applied to modulating macromolecular interactions with a special emphasis on protein-membrane interactions

    Mutations in components of complement influence the outcome of Factor I-associated atypical hemolytic uremic syndrome

    Get PDF
    Genetic studies have shown that mutations of complement inhibitors such as membrane cofactor protein, Factors H, I, or B and C3 predispose patients to atypical hemolytic uremic syndrome (aHUS). Factor I is a circulating serine protease that inhibits complement by degrading C3b and up to now only a few mutations in the CFI gene have been characterized. In a large cohort of 202 patients with aHUS, we identified 23 patients carrying exonic mutations in CFI. Their overall clinical outcome was unfavorable, as half died or developed end-stage renal disease after their first syndrome episode. Eight patients with CFI mutations carried at least one additional known genetic risk factor for aHUS, such as a mutation in MCP, CFH, C3 or CFB; a compound heterozygous second mutation in CFI; or mutations in both the MCP and CFH genes. Five patients exhibited homozygous deletion of the Factor H-related protein 1 (CFHR-1) gene. Ten patients with aHUS had one mutation in their CFI gene (Factor I-aHUS), resulting in a quantitative or functional Factor I deficiency. Patients with a complete deletion of the CFHR-1 gene had a significantly higher risk of a bad prognosis compared with those with one Factor I mutation as their unique vulnerability feature. Our results emphasize the necessity of genetic screening for all susceptibility factors in patients with aHUS

    Tyrosine Kinase Syk Non-Enzymatic Inhibitors and Potential Anti-Allergic Drug-Like Compounds Discovered by Virtual and In Vitro Screening

    Get PDF
    In the past decade, the spleen tyrosine kinase (Syk) has shown a high potential for the discovery of new treatments for inflammatory and autoimmune disorders. Pharmacological inhibitors of Syk catalytic site bearing therapeutic potential have been developed, with however limited specificity towards Syk. To address this topic, we opted for the design of drug-like compounds that could impede the interaction of Syk with its cellular partners while maintaining an active kinase protein. To achieve this challenging task, we used the powerful potential of intracellular antibodies for the modulation of cellular functions in vivo, combined to structure-based in silico screening. In our previous studies, we reported the anti-allergic properties of the intracellular antibody G4G11. With the aim of finding functional mimics of G4G11, we developed an Antibody Displacement Assay and we isolated the drug-like compound C-13, with promising in vivo anti-allergic activity. The likely binding cavity of this compound is located at the close vicinity of G4G11 epitope, far away from the catalytic site of Syk. Here we report the virtual screen of a collection of 500,000 molecules against this new cavity, which led to the isolation of 1000 compounds subsequently evaluated for their in vitro inhibitory effects using the Antibody Displacement Assay. Eighty five compounds were selected and evaluated for their ability to inhibit the liberation of allergic mediators from mast cells. Among them, 10 compounds inhibited degranulation with IC50 values ≤10 µM. The most bioactive compounds combine biological activity, significant inhibition of antibody binding and strong affinity for Syk. Moreover, these molecules show a good potential for oral bioavailability and are not kinase catalytic site inhibitors. These bioactive compounds could be used as starting points for the development of new classes of non-enzymatic inhibitors of Syk and for drug discovery endeavour in the field of inflammation related disorders

    Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    Get PDF
    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com

    Zebrafish ProVEGF-C Expression, Proteolytic Processing and Inhibitory Effect of Unprocessed ProVEGF-C during Fin Regeneration

    Get PDF
    BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration
    • …
    corecore